前页 后页

zeta

Riemann zeta function of two arguments.

SYNOPSIS:

double x, q, y, zeta();
y = zeta(x, q);

DESCRIPTION:

inf.
- -x
zeta(x,q) = > (k+q)
-
k=0

where x > 1 and q is not a negative integer or zero. The Euler-Maclaurin summation formula is used to obtain the expansion:

n
- -x
zeta(x,q) = > (k+q)
-
k=1

1-x inf. B x(x+1)...(x+2j)
(n+q) 1 - 2j
+ --------- - ------- + > --------------------
x-1 x - x+2j+1
2(n+q) j=1 (2j)! (n+q)

where the B2j are Bernoulli numbers.
Note that (see zetac) zeta(x,1) = zetac(x) + 1.

ACCURACY:

REFERENCE:

Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, Series, and Products, p. 1073; Academic Press, 1980.